NASA/TM—1999-209082

‘rlﬁ:,v‘» YA

%

The Reconstruction Problem Revisited

Ambady Suresh
Dynacs Engineering Corporation, Inc., Brook Park, Ohio

May 1999



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA'’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

+ TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

+ TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

» CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

* CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

» SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

+ TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
data bases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

» Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

« E-mail your question via the Internet to
help@sti.nasa.gov

» Fax your question to the NASA Access
Help Desk at (301) 621-0134

» Telephone the NASA Access Help Desk at
(301) 621-0390

*  Write to:
NASA Access Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076



NASA/TM—1999-209082

The Reconstruction Problem Revisited

Ambady Suresh
Dynacs Engineering Corporation, Inc., Brook Park, Ohio

National Aeronautics and
Space Administration

Glenn Research Center

May 1999



Acknowledgments

The author would like to thank H. T. Huynh and D. Paxson for several interesting discussions on upwind schemes.
The author is also grateful to the Computing and Interdisciplinary Systems Office at
Glenn Research Center for permission to publish this work.

Trade names or manufacturers’ names are used in this report for
identification only. This usage does not constitute an official
endorsement, either expressed or implied, by the National
Aeronautics and Space Administration.

Available from

NASA Center for Aerospace Information National Technical Information Service
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076 Springfield, VA 22100

Price Code: A03 Price Code: A03



THE RECONSTRUCTION PROBLEM
REVISITED

Ambady Suresh

Dynacs Engineering, Inc.,

Cleveland, Ohio 44135, USA.

Abstract

The role of reconstruction in avoiding oscillations in upwind schemes is reexamined,
with the aim of providing simple, concise proofs. In one dimension, it is shown that if the
reconstruction is any arbitrary function bounded by neighboring cell averages and increasing
within a cell for increasing data, the resulting scheme is monotonicity preserving, even though
the reconstructed function may have overshoots and undershoots at the cell edges and is in
general not a monotone function. In the special case of linear reconstruction, it is shown
that merely bounding the reconstruction between neighboring cell averages is sufficient to
obtain a monotonicity preserving scheme.

In two dimensions, it is shown that some 1D TVD limiters applied in each direction
result in schemes that are not positivity preserving, i.e. do not give positive updates when
the data are positive. A simple proof is given to show that if the reconstruction inside the cell
is bounded by the neighboring cell averages (including corner neighbors), then the scheme
is positivity preserving. A new limiter that enforces this condition but is not as dissipative

as the Minmod limiter is also presented.

Introduction

In this paper, we begin by reexamining the reconstruction step in upwind schemes!~®

with the aim of deriving slightly more general results and providing simple, concise proofs.

NASA/TM—1999-209082 1



To introduce the one dimensional problem, consider the model equation
ug + u, = 0, (1)
where # is time, x is distance, and u(x,0) = uo(x) is the initial condition. We denote by u?

the cell averages of u(x,t") on a uniform grid of width Az and cell center z; = jAx,

v MRCAL 2)
L= ulLxr Z.
VAN PRy 7

I~

Let R?(), £ = (x — x;)/Ah denote the reconstruction of u(x,#") in the cell j expressed
in local coordinates. The new cell averages are obtained by convecting the reconstructed

profiles a time step and averaging the resulting profiles over a cell. The result is

1/2 1/2—A

wt = [ R+ [ R de )

1/2—A —-1/2

where A = At/h. . For clarity, we omit the superscript n when there is no confusion, i.e ;
denotes u.

For increasing data, i.e. u; > u;_; for all j, we are interested in schemes for which
the new cell averages are also increasing. Such schemes are called monotonicity-preserving
schemes. They mimic the exact solution and as a special case it follows that a step function
propagates without spurious oscillations.

The question we are interested in is:

What are sufficient conditions on the reconstruction R;(£) that will ensure that the scheme
(3) is monotonicity-preserving ¢

This question has been studied extensively over the last two decades in the upwind liter-
ature, and we review existing conditions below. Our aim is to provide a new, simple, concise
proof that covers the general case. Generality is achieved here by considering a) completely
arbitrary functions for reconstruction and b) by considering Monotonicity-Preserving (MP)
schemes as opposed to Total Variation Diminishing (TVD) schemes. TVD schemes are
monotonicity-preserving, but not vice-versa. In addition, MP schemes can be designed to
avoid the chronic loss of accuracy at smooth extrema incurred by TVD schemes (see Ref. 7

for an example).
Existing Conditions
There are two different conditions stated in the literature. The first condition, introduced

by Van Leer! in his seminal paper on upwind schemes and often called Van Leer’s condition,
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Figure 1: An oscillation created by reconstructions bounded by neighboring cell averages.

A =0.25.

states that the reconstruction R;(£) must be bounded by the neighboring cell averages, i.e.

for increasing data, the condition is
uji-1 < Ri(€) < g (4)

While this condition suffices for linear reconstructions, we will show by an explicit coun-
terexample that this is not sufficient for general reconstructions. Indeed, let u;_5 = —6,
Uj_g = =3, uj—1 = 0, u; = 1, u;41 = 4, and the reconstructions be R; »(§) = —3 + 6¢;
Ria(€) = (4= 246 — 48€%)/T; Ry(€) = 1 — (4 — 24¢ — 48¢%)/T: Rysa(€) = 4. These re-
constructions are plotted in Fig. 1. Note that the data is increasing and (4) is satisfied in
each cell. However, the cell averages at the next time step given by (3) for A = 1/4 are
ﬂ?fll = 27/112, ﬂ?"’l = —3/28, and ﬂ?_l"_'ll = 103/28. So monotonicity is not preserved.

Another condition (Harten et. al?, LeVeque®) is stated in terms of the total variation of

the reconstruction. Let T'V(f(x)) denote the total variation of f(x) given by

V() = [ @)l (5)

o0

and T'V(u) denote the discrete total variation of the cell averages given by

V() = 3 fiu o) )

k=—0c0

Then the required condition on the reconstruction is that
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This condition holds for any general reconstruction. For increasing data, (7) implies that R(.)
is an increasing function with no overshoots at the cell faces. However, designing schemes
that satisfy this condition is a bit more difficult because the conditions on R;({) now involve
R;—1(£) and R;41(£) in addition to the cell averages. This condition is also unnecessarily
restrictive since most of the well known TVD schemes do not satisty it.

For example, consider the data given by u;_y =0, u; = 0.2, u;41 = 0.8, and w41, = 2.6.
The reconstructions obtained by the popular Superbee limiter and Van Leer’s Average limiter
( (45) and (46) in the appendix) are identical and given by R;({) = 0.240.4¢ and R;41(€) =
0.8 4+ 1.2¢. which has an overshoot at the face x;,,/5. Thus both these schemes violate (7)
although both limiters are monotonicity preserving. This example clearly illustrates that
condition (7) is unnecessarily restrictive for monotonicity preservation.

Thus, of the two conditions available in the literature, neither are completely satisfactory.
Van Leer’s condition fails for general reconstructions while the second condition (7) is so
restrictive that many well known schemes do not satisfy it. In the next section, we introduce
a slight modification of Van Leer’s condition that is more general than (7) and for which

monotonicity preservation can be proved for general R;(¢).
A Modified Condition

First, we need two inequalities that hold for increasing functions. A function f(x) is an
increasing function if for any a1 > 9, f(x1) > f(x2). Let f(x) be an increasing function in
[—1/2,1/2] and let its mean over this interval be denoted by f. Then, for 0 < A < 1, we
have the following two inequalities that are useful.

1 r1/2 1/2—A

_ 1 B

The first inequality states that sampling an increasing function from the right yields an
average greater than the cell average. To prove this inequality, note that if we denote by
g(A) the left hand side of the first inequality, we get Ag’(A) = f(1/2 — X) — ¢g(A). As this is
nonpositive for all A, the inequality follows. The proof of the second inequality is similar.
The modified condition can be stated as follows:

Theorem-1: Assume we have increasing data and the reconstructions R;(£) satisfy the three

conditions given below for all j:

R;(&) is an increasing function (11)
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Then, for 0 < X < 1, the cell averages at the next time step are also increasing and (3)

becomes a monotonicity preserving scheme.
Proof:

Since R;j_1({) is an increasing function, the first integral in (3) satisfies

1 f1/2

Y e R; () d§ > uj (12)

and from (10) the second integral satisfies

[ riede = (0N (13)

—-1/2

Thus ﬂ}“’l > wj_1. Similarly, from the bounds on R;_»(&), we have

[ Riaede < (1)

/2=

and since R;_1(£) is an increasing function,

1/2 /\
1— X /1/2 §)d§ < tijs. (15)
S0 a?:l < uj-1. Hence, ﬂ?“ > ﬂ?fll completing the proof. 0

Thus, if we add to Van Leer’s condition the requirement that the reconstruction be
increasing when the data are increasing, we can prove monotonicity preservation for any
general reconstruction. Note that conditions (9), (10) and (11) are more general than (7)
since TV(R(.)) can be greater than TV (u). In addition, all the well known second order
TVD schemes satisfy (9), (10) and (11) so that Theorem -1 is not unusually restrictive.

Although adding the requirement that the reconstruction be a monotone function is a
fairly trivial modification, we have not seen Theorem - 1 stated and proved anywhere in the
literature. Indeed, this is all the more surprising since the fairly restrictive condition (7) is
widely quoted. Monotonicity of the reconstruction was imposed as a condition by Colella
and Woodward® in the design of their piecewise parabolic method (PPM), but monotonicity

preservation is not proved there.
TVD Schemes

TVD schemes have some theoretical advantages over monotonicity preserving schemes
such as a guaranteed convergence to a weak solution of the underlying conservation law

2. Monotonicity-preserving schemes differ from TVD schemes only in their treatment of
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local extrema. It is not surprising, therefore, that with some recipe for reconstruction at an
extrema, a result similar to Theorem - 1 can be proved for TVD schemes.

Theorem-2: Let the reconstructions R;(£) satisfy the conditions given below for all j:

R;(€) = uy; (16)
when u;—y < uj < Ujpq
tj—1 < R;i(€) < ujpr and Rj(€) is an increasing function; (17)

when wj_y > uj > Ujiq

Uj—1 > Rij(&) > ujpr and R;j(€) is a decreasing function; (18)
otherwise :
R;(&) = . (19)

Then, for 0 < XA <1, (3) becomes a TVD scheme.

Proof: We introduce some terminology on data types. Let us say the data is increasing at
J when u;_; < u; < w4y and decreasing at j when w;_; > u; > u;41. From Theorem-1 it
follows that for data increasing at j and j — 1, or decreasing at j and 7 — 1 the new cell

averages lie inside the range defined by neighboring old cell averages, i.e.

Min(a;, ;-1) < "' < Max(u;, ;1) (20)

Consider the case where data is increasing at j but we have a local minimum at 7 —1, i.e.
Uj—1 < uj_z and u;—1 < uj. In this case using (19) and (3) we can show that the bound (20)
is still satisfied. Similarly, we can show that the bound (20) holds also for all other cases
such as data decreasing at j — 1 and a minimum at j, or increasing at 7 — 1 and a maximum
at j etc. In short, (20) holds for all data.

Since (20) holds for all data, no new extrema can be created and the value of a local
maximum can only decrease and the value of a local minimum can only increase. Hence the

total variation can only decrease and the theorem is proved. a
The Linear Case

The linear case has been exhaustively studied '7¢ in the context of TVD flux limiters
and will not be repeated here. However, we wish to highlight the following peculiarity
of the linear case, namely that monotonicity is preserved even without requiring that the
reconstruction be increasing for increasing data, i.e. even without (11). In other words, for

increasing data, the slopes can be decreasing and monotonicity is still preserved so long as
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the linear reconstructions remain bounded by neighboring cell averages. For completeness,
a proof is sketched out below.

Assume increasing data and linear reconstructions R;(£) = u; + s;£ satisfying (10) for
all 7. The case where u; = u;_; is trivial. For u; # u;_y, by a suitable normalization we can
take the data to be w11 > 1, u; = 1, u;—1 = 0 and uj_5 < 0. A direct calculation of (3)
gives

ﬂn-l_l — ﬂ?j_ll =1—-X— )\ﬂ]‘_g + )\(1 — )\)(28]‘_1 — S; — Sj_2)/2 (21)

j
From (10), |s;] < 2, |sj-1] < Min(—2u;_9,2), |$;-2] < —2u;_2. Under these bounds, it can
be verified that the right hand side of (21) is positive for 0 < A < 1 and uw;—» < 0. Thus
monotonicity is preserved.

Note however that without condition (11), u*! can lie outside of [u;_1,%;]. So here we

have an instance of the scheme being monotonicity preserving without being bounded by

the initial data.
Reconstruction in Two Dimensions
For the two-dimensional advection equation
uy + auy + buy, =0 (22)

with initial condition u(x,y,0) = wug(x,y), a set of conditions under which higher order
reconstructions preserve monotonicity is not known. The focus then shifts to schemes that
are positivity-preserving (PP) ®~' where some theoretical results can be proved. These are
schemes that give positive updates when the initial data are positive, or equivalently, where
the cell averages at time n 4+ 1 are bounded by the cell averages at time level n. In the
meteorology literature, such schemes are also referred to as positive definite.

In one dimension, the boundedness result used to prove Theorem-1, i.e. that
ujoy < ult < (23)

suffices to prove monotonicity. In two dimensions, this is no longer the case and PP schemes
will not preserve monotonicity in general.

To introduce the reconstruction problem here, let us begin with a base scheme that uses
midpoint rule in time and linear reconstructions in each cell. This scheme is chosen since:
a) it can be readily extended to the Euler equations, b) it requires only one Riemann solver
calculation per face per timestep and c) it has already been implemented in commercial

codes'.
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We assume a uniform grid of spacing Az and Ay and ¢ > 0 and b > 0. A linear

reconstruction is assumed in each cell that can be written in normalized coordinates as
R ;= + 576+ 57 m (24)
with [£],|n] < 1/2. The scheme can be written as

ntl _ -n n+1/2 n+1/2 n+1/2 n+1/2
g = Uy — )‘l’(ui+1/2,j - ui—1/2,j) - )‘Z/(ui,j-l—l/Z - um‘—1/2) (25)

where A\, = aAt/Ax, A\, = bAt/Az and the interface values are obtained by taking a half

timestep inside the cell and can be derived as

W = (1= )82, /2 = A, SV, /2

i+1/2,5 (26)
n+1/2 —n z
Wit = (L= A 2 = ST /2
The linear scheme with S7; and SY; given by their central difference values such as
Sij = (Uigrj — wica3)/2 (27)

is second order accurate in time and space and stable in the region A, > 0, A, > 0, A,+X, < 1.

Thus the time step can be defined in terms of the CFL number by
At =CFL/(a/Ax +b/Ay) (28)

We can now state the reconstruction problem in two dimensions:

What are sufficient conditions on the reconstruction R; ;(£,n) that will ensure that the
scheme (25) is positivity preserving ¢

For example, if we use any of the TVD limiters to calculate the x and y slopes, is the
resulting scheme positivity preserving 7 The answer to this depends on the limiter as the

following example shows. Consider negative data given by

= —1, ﬂ071 — 0

1,1
U_g0 = —100 1}—1,0 = -1, 1}0,0 =0 1}1,0 =0 (29)
U_1,-1 = —1 Ug,—1 = —10, Uy,—1 = —100
ﬂ07_2 - —100
For A, = 0.6,\, = 0.2, both the Superbee (46) and the Average limiter (45) (these
limiters are defined in the appendix below) give ugfgl = 16/50, which shows that these
schemes do not preserve positivity. The Minmod limiter, however, gives ugfgl = —57/50,

which is acceptable. A closer look at the reconstructions in this example reveals that for the

Superbee and Average limiters, the reconstructions in each cell fall outside the range of the

NASA/TM—1999-209082 8



cell averages of its neighbors. This condition turns out to be sufficient to prove positivity as
shown below.
Let us define IV; ; to be the set of cell averages of the immediate first order neighbors of
the cell (¢,7) and u; ;.
Ui—1,j415 Ui+l Uitl,j4+1,
Nij =1 Wicrjs  Uij Ui, (30)
Ui-1,j=1, Uij—1, Uit1,j-1

and U; ; to be the range of variation of u on IV, ;.
Us,; = [Min[N; ], Max[N; ;1] (31)

Theorem-3: Assume that for the scheme (25) the reconstruction in each cell is bounded by

its immediate neighbors, i.e. for all (i,j)
R,; €U, (32)

Then, for Ay + A, < 1,
ﬂf;l-l el ,;0UU_1;0U; ;4 (33)

i.e. the cell average at the next timestep lies inside the union of the averages in the neigh-
borhoods of (i,7), (i — 1,75) and (1,5 — 1).
Proof: Using (25) and (26), we can write the scheme as

uftt = (1= = X)) (Ui — A, STi[2— X, 5¢;/2)
FAe(Uimr; + (L= X)) SEy /2= Ay S5/ 2) (34)
FA (Ui — A ST /24 (1= X)) SY54/2)

which can be written in terms of the normalized reconstructions as
aftt = (1= X = A Rij(=Xa/ 2, =0,/ 2)

MR (1= A/ 2,-0,/2) (35)
A Rijoa(=Ae/ 2, (1= 2,/ 2)

Under the stability limit A, + A, < 1, the points where the reconstructions are sampled in
the above equation lie inside their respective cells. Thus the right hand side is a convex
combination of sampled reconstruction values which are bounded by (32) and thus (33) is
immediate. O

It is easily verified that Theorem-3 holds true for all propagation directions provided
the interface values (26) are defined from upwind cells. The general CFL limit is then
SHERIWES
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The condition that the reconstruction be bounded over the whole cell by all its immediate
neighbors (including corner neighbors) was introduced by Barth and Jesperson'® in the
context of unstructured grids. The above result shows that this condition is useful for
constructing PP schemes in multi-dimensions for structured meshes as well.

We remark that the choice of stencil, i.e. (30) used above is somewhat arbitrary. In fact,
for the Minmod scheme, the reconstruction is so tightly constrained that R;; actually lies
inside the range of u; ;, and two linearly independent cells from u;4q ;, and @; j4;. From this
it follows that ﬂf;"l is bounded by the four values w;;, 4;—1;, t;j—1, and %;_y j_1, a much
smaller stencil than (33).

In the next section, we derive an efficient limiter that enforces (32) but is not as dissipative

as the Minmod limiter.

A PP Limiter

The procedure for modifying the slopes to satisfy (32) is far from unique. The approach
described here is similar to the approach of Barth and Jesperson'®, adapted to structured
grids and modified so as to depend continuously on the data.

To satisfy (32) within a cell, the idea is to restrict the slopes so that the reconstructed
values at the four corners of the cell lie inside the required interval, i.e., (31). Due to the
symmetry of the grid, this is equivalent to restricting |S7;| 4 |57, to lie inside another
interval. We skip the details and give the result in algorithm form.

Let the slopes be defined initially by their centered difference values, namely

St = (Ui — tie14)/2
Siy = (Uijer — Uij-1)/2

and let V,,;, and V)., be defined by

(36)

Uim1 gt = Wigs Uijpr = Uiy Uity g4 — Uij,
me = Min Uij—1,5 — Ui 5, —€, Ui41,5 — Us 5, (37)
Uim1 g4t = Wijy Uijpr = Uiy Uity g4 — Uij,
Vm(w = Max Uij—1,5 — Us 5, €, Ui41,5 — Us 5, (38)
where € is a small positive number (¢ = 107! in all our numerical experiments). Then we

define .
o Mln(|vmin|7 |Vmaac|)

V= 39
(1551 + 52,1 )
The final slopes are then
S¥. = Min(1,V)S?.
1,7 2]
SV = Min(1,V) 57, (40)

NASA/TM—1999-209082 10



It can be verified that after limiting, the reconstructed values in the cell (¢,7) lie inside the
interval U; ; and that the reconstruction depends continuously on the data.

The main problem with this and other limiters is the loss of accuracy at extrema which
make these schemes only first order accurate in the Max. norm. If a scheme is required to be
second order accurate everywhere (i.e. in the Max. norm), such a scheme will advect second
order polynomials exactly. It follows that while advecting smooth extrema such a scheme
will give updates not bounded by the data. It thus appears that second order accuracy in
the Max. norm and positivity preservation are mutually exclusive.

This is not to say that some compromise might be found where positivity preservation
may be relaxed in some useful way near extrema. However, such a compromise has eluded

us thus far.
Numerical Experiments

We present some numerical experiments on two dimensional advection to assess the per-
formance of PP schemes. We solve (22) on the domain [-1,1] X [-1,1]. Periodic boundary
conditions are imposed at the boundaries. A number of initial conditions, advection direc-
tions and timesteps were explored but only two cases are reported here. After computation,
we scan the computed solution for overshoots and undershoots and present line plots through
these regions. These represent the worst case results.

Example 1: In this example, a uniform grid of 120 X 120 cells is used with convection
velocities ¢ = 0.8 and b = 0.1. The timestep was calculated by (28) with CFL = 0.8 and the
final time is t = 20, which corresponds to 8 periods in x and one period in y. The initial

condition is
u(z,y,0) =1 for (224 y*)2 <04 (41)
=0 otherwise
In Figure 2, the results along the line y = —0.264 (j=45) are shown. The solid line is the
exact solution. As can be seen both the Superbee and the Average limiter give significant
overshoots while the Minmod and PP limiters have no overshoots or undershoots. The PP
limiter is not as dissipative as the Minmod limiter but shock resolution is still quite poor.
In terms of efficiency, the PP limiter is in the same ball park as any of the TVD schemes.

Example-2: The initial condition here is
u(z,y,0) = exp(—p(2? + y*)) (42)

with § = 200. The convection velocities are ¢ = 1 and b = 1. The same grid and CFL
number are used as in Example-1, but the final time is ¢ = 2 which corresponds to one

period in both = and y directions. The results along the line y = 0 are shown in Figure 3,

NASA/TM—1999-209082 11



where the loss of accuracy at extrema is clearly visible. The new PP limiter gives results
similar to the Average limiter. The results from the Minmod limiter are much poorer and
are not shown.

We remark that a large number of numerical experiments with various initial conditions
seems to suggest that all the TVD limiters are positivity preserving when the advection

direction is 45 degrees.
Conclusions

In this paper, we have considered anew what conditions a reconstruction must satisfy for an
upwind scheme to have desirable nonoscillatory properties. In one dimension, a simple con-
cise proof is presented that if any general reconstruction is increasing for increasing data and
bounded by neighboring cell averages, the resulting scheme is monotonicity-preserving. In
the special case of linear reconstruction it is shown that merely bounding the reconstruction
between neighboring cell averages is sufficient for monotonicity preservation.

In two dimensions it is shown that if the reconstruction over the whole cell is bounded
by the averages of all its first order neighbors, then the scheme is positivity preserving. An
efficient limiter that achieves this is also presented.

We hope that these concise proofs will be useful in the teaching of upwind methods and

also lead to the design of new schemes.
Appendix

For completeness, we summarize several popular one dimensional TVD limiters here. The
reconstruction in each cell is assumed to be R;({) = u; + s; £ and these limiters are various
recipes to determine s; from the data. Let s; and s_ denote the forward and backward

differences given by

sy = (Ujp1 — ;)
R 43
s— = (45 — ) (43)
The Minmod limiter is given by
1 .
4 = 3 lsen(s) + sgn(s0)] Min(Js_. |, (1)

The Average limiter of Van Leer can be written as
1 .
5 = 3 fsen(s) + sens)] Min(s, +52)/2, 20s-, 2}, ) (15)
and the Superbee limiter of Roe can be written as

= 5 [smn(s,) + sn(s)] Min(Max(|s, . s-]), 2]s_, 2}s. ) (46)

NASA/TM—1999-209082 12



As mentioned above, the Minmod limiter is the most diffusive and the Superbee the least

diffusive.
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Figure 2: Advection of (41) with ¢=0.8, b = 0.1, CFL = 0.8, and t = 20. 120 X 120 uniform
grid
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Figure 3: Advection of (42) with a=1, b= 1, CFL = 0.8, and t = 2. 120 X 120 uniform grid
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